Binomial Probability Distributions: A Guide

A binomial probability distribution is a form of discrete probability distribution where there are only two outcomes: success and failure for any given scenario. The distribution must also have a fixed number of trials, the probabilities of success and failure must remain constant throughout the procedure, and the trials must be independent; one trial cannot affect another trial.

For a binomial probability distribution:

- The number of trials is called n.
- The number of successes in n trials is called x
- And the probability of success is labeled p, with its compliment being q. $(1-p=q)$

Parameters for a binomial probability distribution:

- The mean can be found by multiplying the number of trials by the probability of success

$$
\text { ○ } \mu=n p
$$

- The standard deviation of a binomial probability distribution is found by taking the square root of the product of n, p, and q .
- $\sigma=\sqrt{n p q}$

TI-83/84 functions:
Two functions, both of which can be found in [2 ${ }^{\text {nd }}$] [VARS]

- BinomPDF:
- This function allows a point estimate of the binomial probability distribution at a given ' x ' in ' n ' trials with probability of success ' p '.
- It's arguments are ($\mathrm{n}, \mathrm{p}, \mathrm{x}$) where x is the exact number of trials of which you want the probability.
- BinomCDF:
- This function allows for an estimate of the cumulative probability, starting at 0 successes up to x successes of the binomial probability distribution.
- It's arguments are ($\mathrm{n}, \mathrm{p}, \mathrm{x}$) where x is the right-most value of which you wish to take the probability.

